STATE OF VERMONT PUBLIC UTILITY COMMISSION

)

)

)

)

)

)

)

)

)

Joint Petition of NorthStar Decommissioning Holdings, LLC, NorthStar Nuclear Decommissioning Company, LLC, NorthStar Group Services, Inc., LVI Parent Corporation, NorthStar Group Holdings, LLC, Entergy Nuclear Vermont Investment Company, LLC, and Entergy Nuclear Operations, Inc., and any other necessary affiliated entities to transfer ownership of Entergy Nuclear Vermont Yankee, LLC and for certain ancillary approvals, pursuant to 30 V.S.A. §§ 107, 231, and 232

Docket No. 8880

SUMMARY OF PREFILED TESTIMONY OF GREGORY A. MARET

Mr. Maret's testimony presents the results of an analysis of the proposed transfer of the Vermont Yankee Nuclear Power Station ("VY Station") from the Entergy Petitioners to the NorthStar Petitioners, and the plan for subsequent prompt decommissioning of the VY Station. Mr. Maret evaluates the decommissioning approach proposed by NorthStar and compares that to industry experience and norms, and identifies areas at risk for unanticipated costs, including identifying aspects of the NorthStar plan that are without precedent and that could also result in added costs. Mr. Maret explains why those risks must be considered to evaluate whether the proposed transfer offers sufficient resources to complete decommissioning of the VY Station, including NRC license transfer, spent fuel management, and site restoration.

Mr. Maret sponsors the following exhibits:

Exhibit DPS-GAM-1	Resume of Gregory A. Maret
Exhibit DPS-WKB/GAM-2	Review of Proposed Transfer of Vermont Yankee to NorthStar and Plan for Subsequent Prompt Decommissioning

PUC Docket No. 8880 Prefiled Testimony of Gregory A. Maret August 30, 2017 Page 1 of 18

STATE OF VERMONT PUBLIC UTILITY COMMISSION

)

)

)

)

)

)

)

)

Joint Petition of NorthStar Decommissioning Holdings, LLC, NorthStar Nuclear Decommissioning Company, LLC, NorthStar Group Services, Inc., LVI Parent Corporation, NorthStar Group Holdings, LLC, Entergy Nuclear Vermont Investment Company, LLC, and Entergy Nuclear Operations, Inc., and any other necessary affiliated entities to transfer ownership of Entergy Nuclear Vermont Yankee, LLC and for certain ancillary approvals, pursuant to 30 V.S.A. §§ 107, 231, and 232

Docket No. 8880

TESTIMONY OF GREGORY A. MARET

1 Q1. State your name and business address. 2 A1. Gregory A. Maret, 4451 Brookfield Corporate Drive, Suite 107, Chantilly, VA 3 20151. Q2. 4 On whose behalf are you testifying? 5 A2. I am testifying on behalf of the Vermont Department of Public Service. 6 Q3. What is your occupation? 7 A3. I am an executive consultant for Four Points Group, Incorporated. Four Points 8 Group is an engineering consulting firm engaged in providing services to the 9 nuclear industry. The services provided by Four Points Group include 10 decommissioning cost estimating and planning, and cost estimating and analysis 11 with respect to spent fuel management and disposition. I have over 35 years of 12 experience in the nuclear industry and have been involved in decommissioning 13 cost estimating, planning, and execution since 1991. 14 Have you previously provided expert testimony? Q4.

1	A4.	Yes. I have provided expert witness testimony before state regulatory bodies, and
2		in numerous proceedings before the United States Court of Federal Claims. My
3		resume, Exhibit DPS-GAM-1, contains a complete listing of the matters in which
4		I have provided expert testimony.
5	Q5.	What is your educational and professional background?
6	A5.	I have a B.S. in nuclear engineering from Rensselaer Polytechnic Institute, and
7		M.E.s in nuclear engineering and electric power engineering also from Rensselaer
8		Polytechnic Institute. I was certified as a senior reactor operator at Vermont
9		Yankee. I also completed a program for senior nuclear plant managers at the
10		Institute of Nuclear Power Operations, and served on the executive committee on
11		reactor safety for the American Nuclear Society.
12		I then worked for 14 years at Yankee Atomic Electric Company (Yankee
13		Atomic), licensee at the Yankee Nuclear Power Station, or Yankee Rowe, in
14		Rowe, Massachusetts, first as an engineer in Yankee Atomic's graduate engineer
15		program, then as a Reactor Engineer. I then served as Refueling Coordinator for
16		Outage Management, Assistant to the Plant Superintendent, Reactor Engineering
17		Department Manager, Technical Director, and ultimately the Site Manager during
18		decommissioning at Yankee Atomic. Following my role as Site Manager, I left
19		Yankee Atomic to serve as Operations Superintendent, Plant Manager, and
20		Executive Director of Operations for the Vermont Yankee Nuclear Power
21		Corporation, which was at the time the owner and operator of the VY Station.
22		After leaving the VY Station in 1999, I served as an Executive Consultant for

1		Sequoia Consulting Group, Inc., where I served as Vice President of Operations
2		and Decommissioning for decommissioning of the Yankee Rowe, including
3		transfer of fuel from wet to dry storage, decontamination and demolition of
4		structures, and site radiological and environmental remediation and restoration.
5		After the decommissioning of Yankee Rowe, I continued to consult for the
6		nuclear industry, including providing testimony for the United States on
7		decommissioning and spent fuel storage issues.
8	Q6.	What is the purpose of your testimony in this proceeding?
9	A6.	The purpose of my testimony is to present my review of the proposed transaction,
10		which involves the acquisition of Entergy Nuclear Vermont Yankee, LLC
11		(ENVY), which owns the VY Station, by NorthStar Decommissioning Holdings,
12		LLC from Entergy Nuclear Vermont Investment Company, LLC (ENVIC), which
13		presently holds 100% of the membership interest in ENVY; the assumption by
14		NorthStar Nuclear Decommissioning Company, LLC and NorthStar Group
15		Services, Inc. of certain decommissioning obligations; and the plan for the
16		subsequent prompt decommissioning of the VY Station. If the proposed
17		transaction occurs, ENVY would be renamed NorthStar Vermont Yankee, LLC
18		(NorthStar VY). Throughout my testimony, I refer to Petitioners ENVIC and
19		Entergy Nuclear Operations, Inc., along with ENVY (pre-transfer or in the
20		absence of a transfer) as "Entergy." I refer to Petitioners NorthStar Group
21		Holdings, LLC; LVI Parent Corp.; NorthStar Group Services, Inc.; NorthStar
22		Nuclear Decommissioning Co., LLC; and NorthStar Decommissioning Holding,

PUC Docket No. 8880 Prefiled Testimony of Gregory A. Maret August 30, 2017 Page 4 of 18

1		LLC, and (post-transfer) NorthStar VY, as "NorthStar." I evaluated the proposed
2		NorthStar approach, and in particular, how that proposed approach compares to
3		previous decommissioning experience and industry norms. I also evaluated the
4		proposed approach to identify areas of risk for unanticipated costs, including
5		identifying aspects of the NorthStar plan that are without precedent and that could
6		also result in added costs. As part of my review, I prepared, with Warren K.
7		Brewer, the joint expert report submitted as Exhibit DPS-WKB/GAM-2 to Mr.
8		Brewer's and my testimony in this proceeding.
9	Q7.	Please describe the scope of your review of the Entergy and NorthStar materials.
10	A7.	I reviewed the Petitioners' Prefiled Testimony, the supporting exhibits,
11		documents provided by Petitioners in response to information requests and
12		publicly available documents, including available data from industry experience
13		in decommissioning other nuclear power plants, relevant to evaluating risks
14		associated with the potential costs for decommissioning of VY. I also compared
15		NorthStar's plans to my own experience managing decommissioning and
16		consulting for other owners on decommissioning issues.
17	Q8.	What conclusions did you reach concerning the proposed transfer of VY to
18		NorthStar and the plan for subsequent prompt decommissioning?
19	A8.	My conclusions are:
20		1. NorthStar has not provided sufficient information to demonstrate that
21		adequate analysis has been performed to fully identify and quantify the
22		amount of material (primarily concrete and soil) that will contain volumetric

1		contamination and thus must be dispositioned at a licensed facility. As a
2		result, the cost to dispose of waste materials may be understated.
3	2.	Re-use of material involves significant costs to comply with radiological and
4		non-radiological limits on hazardous material. NorthStar has not provided
5		sufficient information to demonstrate that the costs to ensure compliance have
6		been fully identified and included in its cost estimates. As a result, the costs to
7		re-use waste materials as onsite fill may be understated.
8	3.	Decontamination of systems and structures typically occurs during
9		dismantlement to improve personnel safety and reduce the potential for
10		spreading contamination.
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		

PUC Docket No. 8880 Prefiled Testimony of Gregory A. Maret August 30, 2017 Page 6 of 18

1	A10.	In my experience, the primary challenge of decommissioning is to safely and
2		efficiently remove and segregate material into different waste categories for re-
3		use on site or shipment to a disposal site.
4	Q11.	What risks are associated with completing decommissioning within the projected
5		costs?
6	A11.	There are four primary risks: performance risk, scope risk, regulatory risk, and
7		financial risk.
8	Q12.	What is performance risk?
9	A12.	Performance risk is risk that the defined scope of activities cannot be completed
10		within the allotted schedule for the estimated cost.
11	Q13.	What could prevent completion of the defined scope within the estimated cost and
12		schedule?
13	A13.	There are numerous issues that could cause costs to increase above estimates and
14		shift the project schedule. These include delays in performance due to weather or
15		other issues, resource conflicts, personnel turnover, equipment or tool issues, and
16		other unforeseen delays. For example, certain decommissioning activities at the
17		Connecticut Yankee Nuclear Power Plant (Connecticut Yankee) were delayed for
18		several years due to litigation with the town of Haddam, Connecticut.
19	Q14.	How is performance risk addressed during decommissioning?
20	A14.	Licensees typically include contingency in decommissioning cost estimates to
21		account for performance risk. Contingency generally ranges from 15 to 25 percent
22		of the total estimate. Contingency is included for items that almost inevitably will

1		occur, but for which exact timing and affected projects cannot be known in
2		advance. Contingency is typically provided for issues including:
3		1. Weather delays;
4		2. Unanticipated work difficulty associated with confined spaces;
5		3. Equipment or tool breakage;
6		4. Difficulty with waste packaging;
7		5. Personnel turnover;
8		6. Resource conflicts; and
9		7. Recontamination of previously cleaned areas.
10	Q15.	What is the expectation with use of contingency?
11	A15.	Managers typically expect all contingency to be utilized during the performance
12		of the project. The distinction between contingency and other projected costs is
13		that the exact projects requiring contingency funds cannot be predicted in
14		advance.
15	Q16.	What is scope risk?
16	A16.	Scope risk is the risk that there are tasks required to complete decommissioning
17		that were not foreseen in the decommissioning estimate. Numerous licensees,
18		including Connecticut Yankee Atomic Power Company, Southern California
19		Edison and Yankee Atomic, were faced with increased decommissioning costs
20		when previously unknown underground items were discovered. These items can
21		include abandoned pipes, cables, or structures that were not on current site
22		drawings and thus were not included in the decommissioning scope.

1		In addition, previously unknown or unidentified radiological and hazardous
2		material contamination can increase required scope. The licensees at Yankee
3		Atomic and Connecticut Yankee, for example, identified soil contamination as a
4		result of leakage, paint chips, or waste from original construction that required
5		additional mitigation to complete decommissioning.
6	Q17.	Is scope risk addressed by contingency?
7	A17.	Contingency does not typically address scope risk, and historically additional
8		funds have been needed to address expansions in scope. Scope risk cannot be
9		completely eliminated, but can be reduced by performing a detailed site
10		characterization prior to commencing work.
11	Q18.	What is regulatory risk?
12	A18.	Regulatory risk is risk that results from the inability to accurately predict future
13		changes in regulations. Since unknown future changes cannot be evaluated, the
14		cost estimate cannot include costs to comply with such regulations. Yankee
15		Atomic faced this issue with radiological and non-radiological standards imposed
16		for soil and concrete.
17	Q19.	Is regulatory risk addressed by contingency?
18	A19.	Contingency does not typically address regulatory risk. Estimates are generally
19		based on current requirements or the licensee's understanding of those
20		requirements. If the requirements change during execution, additional funds may
21		be required to meet those new requirements.
22	Q20.	What is financial risk?

PUC Docket No. 8880 Prefiled Testimony of Gregory A. Maret August 30, 2017 Page 10 of 18

1	A20.	When planning decommissioning, cashflow is modeled to demonstrate that
2		sufficient funds will be available to perform all activities. To create this cashflow,
3		the estimator is required to make several financial assumptions, including, for
4		example, the rate of inflation of costs over the decommissioning period as well as
5		earnings on any funds used for decommissioning. Financial risk results from the
6		risk that these assumptions are incorrect, and that as a result funds committed for
7		decommissioning will not be sufficient to cover costs.
8	Q21.	Does contingency address financial risk?
9	A21.	Contingency does not typically address financial risk.
10	Q22.	Have you seen any evidence that NorthStar has considered each of these risk
11		types?
12	A22.	Based on the information provided to date, no. NorthStar includes contingency in
13		its estimate, but its handling of this contingency is different from the industry
14		standard followed in previous projects. NorthStar assumes a flat 10 percent
15		contingency on all line items, but proposes to remove any unused contingency on
16		a line by line basis and retain those monies as profit, meaning that contingency
17		would not be available for other line items.
18		Further, NorthStar's proposed 10 percent contingency is much lower than the 15
19		to 25 percent contingency assumed by other estimators, and, for example, the 17.3
20		percent contingency assumed in the Entergy estimate. In addition, removal of this
21		contingency on a line-item basis effectively reduces the actual contingency that is
22		available, particularly late in project execution.

1		NorthStar indicated that it may make some amount of the profit it captures after
2		completion of a given task available to fund cost overruns of other activities until
3		the decommissioning is complete, but it has made no firm commitment to doing
4		so. Making those funds available would address some, but not all, of my questions
5		regarding contingency.
6	Q23.	Did you consider NorthStar's proposed \$125 million support agreement as
7		contingency?
8	A23.	NorthStar's proposed \$125 million support agreement could be viewed as another
9		type of contingency, but doesn't represent actual funds, so I did not consider this
10		as a type of contingency.
11	Q24.	Did you identify any specific risks as part of your review?
12	A24.	Yes, I identified risks associated with unknown site conditions, unanticipated
13		costs associated with site restoration, and assumptions and approaches that are
14		unprecedented in the commercial nuclear industry.
15	Q25.	Regarding risk associated with unknown site conditions, what risks did you
16		identify?
17	A25.	There are two primary risks that I identified in my review. The first risk relates to
18		volumetric contamination of concrete from tritium and/or carbon 14. Tritium and
19		carbon 14 are both hard-to-detect radioactive isotopes that are naturally occurring
20		and also produced in a nuclear reactor during operation. The presence of tritium
21		or carbon 14 in materials determines (in part) what disposal options are available
22		for those materials. At Yankee Atomic, for example, the existence of carbon 14 in

1		concrete derailed plans to use that concrete as on-site fill material, and instead the
2		concrete was shipped off site to a burial facility at increased cost.
3		The second risk relates to volumetric contamination of soil from similar isotopes.
4		From my experience with other decommissioning projects, the cost estimates at
5		the start of decommissioning typically did not accurately consider the extent of
6		radioactive contamination from these hard-to-detect isotopes. NorthStar has not
7		provided information demonstrating that it fully considered the existence of these
8		hard-to-detect isotopes in concrete structures and soils, and therefore that it
9		accurately projected disposal needs and costs for these materials. Discovery of
10		volumetric contamination, and the associated cost increases, could impact the
11		decommissioning cost estimate in ways that affect all aspects of
12		decommissioning, including site restoration.
13	Q26.	What risks did you identify with unanticipated costs for site restoration?
14	A26.	The primary risk with unanticipated costs for site restoration lies with the re-use
15		of material on site. NorthStar points to Connecticut Yankee and Yankee Atomic
16		as precedent for its proposal to re-use debris with low levels of radiological
17		contamination but meeting NRC release standards to fill voids remaining after
18		demolition of buildings. However, Connecticut Yankee ultimately removed all
19		above-ground concrete from the site and did not use this material as on-site fill.
20		Similarly, Yankee Atomic disposed of all concrete with distinguishable plant-
21		related radioactivity at an off-site disposal facility. The proposed use of on-site
22		material with radioactivity above background, but within NRC release standards,

1		is without precedent. In addition, it is not clear from the NorthStar estimate that
2		sufficient funds have been included for adequate radiation surveying to ensure
3		that concrete for re-use meets the applicable radiological requirements. This
4		presents a risk that costs, including those for site restoration, may exceed those
5		assumed by NorthStar.
6	Q27.	Can you quantify the additional cost if NorthStar did not re-use radiologically
7		contaminated concrete in the manner it assumes?
8	A27.	NorthStar did not provide sufficient detail to determine the additional cost, if any,
9		that could result if NorthStar were not permitted to re-use concrete as onsite fill.
10		Additional information that would help in quantifying the additional cost includes
11		characterization results for soil and concrete; estimated volumes of soil and
12		concrete; estimated curie content of soil and concrete, by isotope; the volume of
13		backfill required; and the cost of clean backfill.
14	Q28.	What risks did you identify with NorthStar's assumptions and approaches?
15	A28.	I identified four risks, three with NorthStar's proposed approach and one with
16		NorthStar's assumptions. The three risks with approach involve use of
17		decontamination services, use of fixatives, and use of explosives in demolition
18		activities.
19		
20	Q29.	What are decontamination services?
21	A29.	During operation of a nuclear power plant, certain structures, systems, and
22		components become contaminated with radioactive materials. This material can

PUC Docket No. 8880 Prefiled Testimony of Gregory A. Maret August 30, 2017 Page 14 of 18

1		be removed in part by wiping or scrubbing the surfaces, using mechanical means
2		(such as scabbling or sandblasting), or using chemical flushes. Decontamination is
3		used to reduce radiation levels to which workers are exposed, and is thus
4		performed to improve worker safety. Decontamination does not generally make
5		contaminated materials free of contamination (though in the case of concrete
6		surfaces, it can be used to separate contaminated material from clean material). As
7		a result, decontamination is generally limited to those situations where the most
8		benefit can be obtained, such as the reactor coolant piping and concrete surfaces.
9		
10		
11		
12		
13		
14		
15		
16	Q31.	What are fixatives?
17	A31.	Fixatives are commercial products that are generally used to prevent lead or PCB-
18		containing paint from flaking off a surface, and to contain radioactive
19		contamination. Fixatives lock the contamination in place on an item or structure,
20		and in this respect, fixatives are the exact opposite of decontamination. However,
21		fixatives are also used to improve worker safety, and can potentially accelerate
22		decommissioning activities and reduce costs.

PUC Docket No. 8880 Prefiled Testimony of Gregory A. Maret August 30, 2017 Page 15 of 18

PUC Docket No. 8880 Prefiled Testimony of Gregory A. Maret August 30, 2017 Page 16 of 18

1		
2		
3		
4		
5	Q36.	What is waste burial as it relates to decommissioning?
6	A36.	Radioactively contaminated waste resulting from demolition of a nuclear power
7		plant is generally transported from the site to a licensed facility where it is stored
8		and monitored to ensure the safety of the public. NRC regulations divide the
9		waste into classes: A, B, and C. Vermont has established a compact for waste
10		disposal with Texas. Waste disposed under this compact would be buried at the
11		Waste Control Specialists (WCS) site in Andrews County, Texas. Other waste
12		may be disposed of at either a licensed hazardous waste site or as general debris
13		depending on its content.
14	Q37.	What are the costs for waste burial at WCS?
15	A37.	The published rates for disposal of class A waste at the WCS NRC-licensed waste
16		disposal site range from \$100 per cubic foot to \$180 per cubic foot. Waste that
17		has very low levels of radiological contamination (typically concrete or soil) can
18		be sent to licensed hazardous waste sites.
19		
20		
21		

PUC Docket No. 8880 Prefiled Testimony of Gregory A. Maret August 30, 2017 Page 17 of 18

PUC Docket No. 8880 Prefiled Testimony of Gregory A. Maret August 30, 2017 Page 18 of 18

